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ABSTRACT 

Long-wavelength wave propagation and dispersion in fluid-saturated rigid-framed porous media is generally 

described using the Equivalent-fluid local theory [1]. Working for simplicity in 2D, we may sketch as follows 

one unit periodic cell Ω  of one isotropic material, centred at position ),( YX=R  :   
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Let ),()( yxII =r  be the fluid indicator function (1 in the fluid, 0 in the solid). Let V and Vφ  be the volume of 

Ω  and fΩ  respectively, φ being the porosity. Let ),( rv t and ),( rtp  be the fluid velocity and fluid pressure. 

Then, the macroscopic fluid velocity ),( RV t  and macroscopic fluid pressure ),( RtP are defined according to 
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We limit ourselves to small-amplitude long-wavelength wave propagation along axis x . The dependence on R  

is a dependence on X  and only the component x  of the velocity V  – say U – is non vanishing. According to 

the Equivalent-fluid local theory, the variables ),( XtU  and ),( XtP are governed by the macroscopic Eqs   
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with ρ̂ and χ̂  being density and compressibility operators defined by kernels functions )(tρ and )(tχ , i.e. 
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In harmonic regime, { }tieXUXtU ω−= )(
~
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Re),( ,  and the Eqs (3-6) yield 
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where )(~ ωρ and )(~ ωχ  are the complex Fourier amplitudes of the kernels functions )(tρ  and )(tχ . They  are 

complex-valued densities and compressibilities that can be computed from microgeometry (and fluid 

parameters) by solving and averaging two independent “cell problems” specifying, resp.,  the response of the 

fluid subject to a spatially uniform, time variable - tie ω−
-  bulk force, and, the response of the fluid subject to a 

spatially uniform, time variable - tie ω−
- bulk heating. At real frequency ω , there is one wave propagating and 

attenuating with effective wave number )(~)(~)( ωχωρωω =k , i.e. complex wavespeed   
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In spite of its widespread use in acoustic literature, this theory is limited to frequencies and microgeometries 

ensuring that the medium reacts as a local medium. Dissatisfied with this limitation, and considering that our 

wave propagation problems may escape a description in terms of the traditional two-scale homogenization 

theory  [2], we have recently proposed a general Equivalent-fluid nonlocal theory inspired by electromagnetic 

considerations [3]. In this new nonlocal theory, direct account is made of the fact that the properties of the 

medium depend, in general, not only on the time variations of the macroscopic fields (frequency dispersion), but 
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also on their space variations (spatial dispersion). The macroscopic velocity is defined as before (see Eq (1)). 

The macroscopic pressure is defined in a new manner. Because it reminds of the notion of macroscopic Maxwell  

strength field H , we denote it by the letter H . Considering, as above, that wave propagation occurs along the 

axis  x , the macroscopic pressure ),( XtH  is defined so that  

        ),(),(),(),( rvrvr tXtHttp =      (10) 

This is an acoustic “Poynting-Heaviside” relation.  The variables ),( XtU  and ),( XtH now obey   
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with ρ̂ and χ̂ being density and compressibility operators defined by kernels ),( Xtρ and ),( Xtχ , i.e. 
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the definition (10), the complex-valued effective quantities ),(~ kωρ and ),(~ kωχ  may now be computed from 

microgeometry by solving and averaging two independent “cell problems” specifying, resp.,  the response of the 

fluid subject to a time variable - tie ω−
-  and spatially variable  - ikxe -  bulk force, and, the response of the fluid 

subject to a time variable - tie ω−
- and spatially variable - ikxe -   bulk heating. At real frequency ω , there may 

be more than one wave propagating and attenuating. These waves i=1,2… have  effective complex wave 

numbers )(ωik , solutions to the dispersion equation 1),(~),(~
2
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We present here an explicit check of the proposed Equivalent-fluid  nonlocal  theory, in the special case where 

the material is a square array of solid cylinders. Indeed, in this case, a direct analytical multiple scattering 

calculation of the wavespeed )(/)( 11 ωωω kc = of the least attenuated wave is feasible [4]. It may be compared 

with the wavespeeds calculated with the Equivalent-fluid local and nonlocal theory after solving the two types 

(local and nonlocal) of “cell problems” (with Freefem++, in the present work). For a medium of porosityφ = 0.9, 

we plot below the real part of the three wavespeeds (with 0/ cka ω≡  and ≡L cell dimension).  

                      
As illustrated, the Equivalent-fluid local theory predict wavespeeds which are rapidly in error when the 

wavelengths reduce. This is not the case of the Equivalent-fluid nonlocal theory, which provides a clear 

validation of its principles. Frequencies at which the nonlocal theory eventually ceases to be valid are 

frequencies at which the propagation no longer is susceptible of a complete macroscopic description. In the 

future, it will be interesting to test the nonlocal theory in geometries with resonators – Cf. the ultrasonic 

metamaterials studied by Fang et al. [5], and  contrast it with the traditional two-scale homogenization theory. 
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